Chitosan nano-structure loaded with recombinant E. coli O157:H7 antigens as a vaccine candidate can effectively increase immunization capacity

Autor: Jaleh Khanifar, Ali Hatef Salmanian, Reza Haji Hosseini, Jafar Amani, Rohoallah Kazemi
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Artificial Cells, Nanomedicine, and Biotechnology, Vol 47, Iss 1, Pp 2593-2604 (2019)
Druh dokumentu: article
ISSN: 21691401
2169-141X
2169-1401
DOI: 10.1080/21691401.2019.1629947
Popis: Escherichia coli O157:H7 is considered as emerging foodborne pathogens that occur globally. Three major virulence protein factors; EspA(E), intimin(I), Tir(T) and Stx2 toxin have been found to be highly associated with bloody diarrhoea or, Haemolytic Uremic Syndrome. In this study, a trivalent recombinant EIT in combination with the binding domain of STX toxin were encapsulated with chitosan nanoparticles as a combination vaccine candidate. Mice were immunized either subcutaneously or orally with these antigens and challenged with E. coli O157:H7. Results of the binding inhibition assay with caco2 cell monolayer show a significant reduction in the adhesion percentage of pre-treated E. coli O157:H7 with immunized mice sera. Evaluation of neutralizing abilities of immune sera pre-incubated with CD50 dose of STX2 by Vero cells cytotoxicity neutralization assay shows less morphological reforms in comparison with the control groups. Results of mice mortality challenge with STX2 demonstrate around 66% of survived in immunized mice. In a challenge experiment with E. coli O157:H7, all the immunized mice showed a significant decrease in bacterial colonization and shedding. The results indicate that the use of multiple recombinant proteins in combination with natural nanostructure effectively evocated strong humoral and mucosal response, increasing the protection capacity of the synthetic antigen.
Databáze: Directory of Open Access Journals