Autor: |
Johannes A Kassel, Benjamin Walter, Holger Kantz |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
New Journal of Physics, Vol 25, Iss 11, p 113036 (2023) |
Druh dokumentu: |
article |
ISSN: |
1367-2630 |
DOI: |
10.1088/1367-2630/ad091e |
Popis: |
We present a method to infer the arbitrary space-dependent drift and diffusion of a nonlinear stochastic model driven by multiplicative fractional Gaussian noise from a single trajectory. Our method, fractional Onsager-Machlup optimisation (fOMo), introduces a maximum likelihood estimator by minimising a field-theoretic action which we construct from the observed time series. We successfully test fOMo for a wide range of Hurst exponents using artificial data with strong nonlinearities, and apply it to a data set of daily mean temperatures. We further highlight the significant systematic estimation errors when ignoring non-Markovianity, underlining the need for nonlinear fractional inference methods when studying real-world long-range (anti-)correlated systems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|