A new screening system for entry inhibitors based on cell-to-cell transmitted syncytia formation mediated by self-propagating hybrid VEEV-SARS-CoV-2 replicon

Autor: Na Li, Xiao-Ling Chen, Qi Li, Zhe-Rui Zhang, Cheng-Lin Deng, Bo Zhang, Xiao-Dan Li, Han-Qing Ye
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Emerging Microbes and Infections, Vol 11, Iss 1, Pp 465-476 (2022)
Druh dokumentu: article
ISSN: 2222-1751
22221751
DOI: 10.1080/22221751.2022.2030198
Popis: The extremely high transmission rate of SARS-CoV-2 and severe cases of COVID-19 pose the two critical challenges in the battle against COVID-19. Increasing evidence has shown that the viral spike (S) protein-driven syncytia may be responsible for these two events. Intensive attention has thus been devoted to seeking S-guided syncytium inhibitors. However, the current screening campaigns mainly rely on either live virus-based or plasmid-based method, which are always greatly limited by the shortage of high-level biosafety BSL-3 facilities or too much labour-intensive work. Here, we constructed a new hybrid VEEV-SARS-CoV-2-S-eGFP reporter vector through replacement of the structural genes of Venezuelan equine encephalitis virus (VEEV) with the S protein of SARS-CoV-2 as the single structural protein. VEEV-SARS-CoV-2-S-eGFP can propagate steadily through cell-to-cell transmission pathway in S- and ACE2-dependent manner, forming GFP positive syncytia. In addition, a significant dose-dependent decay in GFP signals was observed in VEEV-SARS-CoV-2-S-eGFP replicating cells upon treatment with SARS-CoV-2 antiserum or entry inhibitors, providing further evidence that VEEV-SARS-CoV-2-S-eGFP system is highly sensitive to characterize the anti-syncytium-formation activity of antiviral agents. More importantly, the assay is able to be performed in a BSL-2 laboratory without manipulation of live SARS-CoV-2. Taken together, our work establishes a more convenient and efficient VEEV-SARS-CoV-2-S-eGFP replicating cells-based method for rapid screening of inhibitors blocking syncytium formation.
Databáze: Directory of Open Access Journals