Autor: |
Maggie M. Hantak, Robert P. Guralnick, Alina Zare, Brian J. Stucky |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
iScience, Vol 25, Iss 8, Pp 104784- (2022) |
Druh dokumentu: |
article |
ISSN: |
2589-0042 |
DOI: |
10.1016/j.isci.2022.104784 |
Popis: |
Summary: Openly available community science digital vouchers provide a wealth of data to study phenotypic change across space and time. However, extracting phenotypic data from these resources requires significant human effort. Here, we demonstrate a workflow and computer vision model for automatically categorizing species color pattern from community science images. Our work is focused on documenting the striped/unstriped color polymorphism in the Eastern Red-backed Salamander (Plethodon cinereus). We used an ensemble convolutional neural network model to analyze this polymorphism in 20,318 iNaturalist images. Our model was highly accurate (∼98%) despite image heterogeneity. We used the resulting annotations to document extensive niche overlap between morphs, but wider niche breadth for striped morphs at the range-wide scale. Our work showcases key design principles for using machine learning with heterogeneous community science image data to address questions at an unprecedented scale. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|