Popis: |
Abstract Background The Apiaceae family is among the most significant plant families because it contains both beneficial and poisonous plants. Due to their morphological similarity, these harmless and lethal species are frequently confounded. Cumin, fennel, and anise are the most prevalent members of the family Apiaceae in Egypt. Members of this family are routinely used as medical surrogates, so it is crucial that they are correctly identified and distinguished. DNA barcoding is a molecular technique used for identifying species and reconstructing phylogenetic trees. Results Six plants from this family were chosen for this study due to their medicinal importance, and four DNA barcoding loci (rbcL, matK, trnH-psaA, and ITS) were used to identify them. The amplicons were sequenced, and the comparative analysis was conducted between the sequences evaluated and the most significant Blast results. The DNA rbcL, trnH-psaA, and ITS barcodes exhibited similar amplicons among the six species of Apiaceae, while the trnH-psaA barcode exhibited different amplicons among the Apiaceae. Maximum likelihood approach was used to calculate the genetic distance between the sex species of Apiaceae. The most significant findings were that the one from four DNA barcoding was able to distinguish between distinct species and confirm their evolutionary belonging to this family. Conclusions The current study concludes that trnH-psbA and ITS DNA identifiers can be used to accurately identify, differentiate, and record Apiaceae species, while the rbcl DNA barcode appears to have fallen short of its intended purpose. So, the data that come from DNA barcodes could be used for the biodiversity assessment and the similarities between hazardous and commercial plants to resolve some of these deficiencies. |