A geometric method for eigenvalue problems with low-rank perturbations

Autor: Thomas J. Anastasio, Andrea K. Barreiro, Jared C. Bronski
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Royal Society Open Science, Vol 4, Iss 9 (2017)
Druh dokumentu: article
ISSN: 2054-5703
DOI: 10.1098/rsos.170390
Popis: We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 J. Comput. Neurosci. 22, 239–254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 IMA J. Appl. Math. 48, 249–264. (doi:10.1093/imamat/48.3.249)).
Databáze: Directory of Open Access Journals