Popis: |
A crucial material comprising a pneumatic tire is rubber. In general, the tire, or more specifically, the hysteresis effects brought on by the deformation of the part made of rubber during the procedure, heat up the part. In addition, the tire temperature depends on several factors, including the inflation pressure, automobile loading, car speed, road tire, the environmental conditions, and the tire geometry. This work focuses on using simulations to calculate the temperature and generated heat flow distributions of a rolling tire with constant velocity using the finite element method. For the sake of simplicity, it is assumed that the only components of the tire are rubber, body-ply, bead wire, and the rim. While the other components are believed to be made of a linear elastic material, the nonlinear mechanical behavior of the rubber is characterized by a Mooney–Rivlin model. Investigations are conducted into the combined effects of vehicle loads and inflation pressure. Hysteresis energy loss is used as a bridge to link the strain energy density to the heat source in rolling tires, and their temperature and heat flow distributions may be determined by steady-state thermal analysis. Thanks to the state-of-the-art computing method, the time required for connected 3D dynamic rolling tire simulations is reduced. The simulation outcomes demonstrate that the maximum temperature in this paper is attained with high weights, high velocities, and low inner inflated pressures. Overall, the maximum temperature is increased with the rise of all three variables. Moreover, the rise of the friction coefficient between the tread and road surface moves the high-temperature area towards the tread/sidewall connection area. |