Autor: |
Naif D. Alotaibi, Hadi Jahanshahi, Qijia Yao, Jun Mou, Stelios Bekiros |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 11, Iss 18, p 4004 (2023) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math11184004 |
Popis: |
Advancing cutting-edge techniques to accurately classify electromyography (EMG) signals are of paramount importance given their extensive implications and uses. While recent studies in the literature present promising findings, a significant potential still exists for substantial enhancement. Motivated by this need, our current paper introduces a novel ensemble neural network approach for time series classification, specifically focusing on the classification of upper limb EMG signals. Our proposed technique integrates long short-term memory networks (LSTM) and attention mechanisms, leveraging their capabilities to achieve accurate classification. We provide a thorough explanation of the architecture and methodology, considering the unique characteristics and challenges posed by EMG signals. Furthermore, we outline the preprocessing steps employed to transform raw EMG signals into a suitable format for classification. To evaluate the effectiveness of our proposed technique, we compare its performance with a baseline LSTM classifier. The obtained numerical results demonstrate the superiority of our method. Remarkably, the method we propose attains an average accuracy of 91.5%, with all motion classifications surpassing the 90% threshold. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|