Additive Noise Effects on the Stabilization of Fractional-Space Diffusion Equation Solutions
Autor: | Wael W. Mohammed, Naveed Iqbal, Thongchai Botmart |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematics, Vol 10, Iss 1, p 130 (2022) |
Druh dokumentu: | article |
ISSN: | 10010130 2227-7390 |
DOI: | 10.3390/math10010130 |
Popis: | This paper considers a class of stochastic fractional-space diffusion equations with polynomials. We establish a limiting equation that specifies the critical dynamics in a rigorous way. After this, we use the limiting equation, which is an ordinary differential equation, to approximate the solution of the stochastic fractional-space diffusion equation. This equation has never been studied before using a combination of additive noise and fractional-space, therefore we generalize some previously obtained results as special cases. Furthermore, we use Fisher’s and Ginzburg–Landau equations to illustrate our results. Finally, we look at how additive noise affects the stabilization of the solutions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |