Additive Noise Effects on the Stabilization of Fractional-Space Diffusion Equation Solutions

Autor: Wael W. Mohammed, Naveed Iqbal, Thongchai Botmart
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 1, p 130 (2022)
Druh dokumentu: article
ISSN: 10010130
2227-7390
DOI: 10.3390/math10010130
Popis: This paper considers a class of stochastic fractional-space diffusion equations with polynomials. We establish a limiting equation that specifies the critical dynamics in a rigorous way. After this, we use the limiting equation, which is an ordinary differential equation, to approximate the solution of the stochastic fractional-space diffusion equation. This equation has never been studied before using a combination of additive noise and fractional-space, therefore we generalize some previously obtained results as special cases. Furthermore, we use Fisher’s and Ginzburg–Landau equations to illustrate our results. Finally, we look at how additive noise affects the stabilization of the solutions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje