Physics-driven learning for digital holographic microscopy

Autor: Kieber Rémi, Froehly Luc, Jacquot Maxime
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: EPJ Web of Conferences, Vol 309, p 15005 (2024)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202430915005
Popis: Deep neural networks based on physics-driven learning make it possible to train neural networks with a reduced data set and also have the potential to transfer part of the numerical computations to optical processing. The aim of this work is to develop the first deep holographic microscope device incorporating a hybrid neural network based on the plane-wave angular spectrum method for dynamic image autofocusing in microscopy applications.
Databáze: Directory of Open Access Journals