Bayesian inference for the log-symmetric autoregressive conditional duration model

Autor: JEREMIAS LEÃO, RAFAEL PAIXÃO, HELTON SAULO, THEMIS LEAO
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Anais da Academia Brasileira de Ciências, Vol 93, Iss 4 (2021)
Druh dokumentu: article
ISSN: 1678-2690
0001-3765
DOI: 10.1590/0001-3765202120190301
Popis: Abstract This paper adapts Hamiltonian Monte Carlo methods for application in log-symmetric autoregressive conditional duration models. These recent models are based on a class of log-symmetric distributions. In this class, it is possible to model both median and skewness of the duration time distribution. We use the Bayesian approach to estimate the model parameters of some log-symmetric autoregressive conditional duration models and evaluate their performance using a Monte Carlo simulation study. The usefulness of the estimation methodology is demonstrated by analyzing a high frequency financial data set from the German DAX of 2016.
Databáze: Directory of Open Access Journals