Microbial community dissimilarity for source tracking with application in forensic studies.

Autor: Kyle M Carter, Meng Lu, Qianwen Luo, Hongmei Jiang, Lingling An
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: PLoS ONE, Vol 15, Iss 7, p e0236082 (2020)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0236082
Popis: Microbial source-tracking is a useful tool for trace evidence analysis in Forensics. Community-wide massively parallel sequencing profiles can bypass the need for satellite microbes or marker sets, which are unreliable when handling unstable samples. We propose a novel method utilizing Aitchison distance to select important suspects/sources, and then integrate it with existing algorithms in source tracking to estimate the proportions of microbial sample coming from important suspects/sources. A series of comprehensive simulation studies show that the proposed method is capable of accurate selection and therefore improves the performance of current methods such as Bayesian SourceTracker and FEAST in the presence of noise microbial sources.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje