Determination of the Allelic Composition of the sdw1/denso (HvGA20ox2), uzu1 (HvBRI1) and ari-e (HvDep1) Genes in Spring Barley Accessions from the VIR Collection

Autor: Kseniia A. Lukina, Igor V. Porotnikov, Olga Yu. Antonova, Olga N. Kovaleva
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Plants, Vol 13, Iss 3, p 376 (2024)
Druh dokumentu: article
ISSN: 2223-7747
DOI: 10.3390/plants13030376
Popis: The lodging of barley significantly limits its potential yield, leads to the deterioration of grain quality, and complicates mechanized harvesting. More than 30 dwarfness and semi-dwarfness genes and loci are known for barley, and their involvement in breeding can solve the problem of lodging. The most common dwarfing alleles are of the genes sdw1/denso (HvGA20ox2), uzu1 (HvBRI1), and ari-e (HvDep1). The aim of this study was the design of dCAPS markers for the sdw1.c and ari-e.GP alleles and the molecular screening of barley accessions from the VIR collection for identifying these and other dwarfing alleles commonly used in breeding. Two dCAPS markers have been developed to identify the sdw1.c allele of the HvGA20ox2 gene and ari-e.GP of HvDep1. These dCAPS markers and two known from the literature CAPS and dCAPS markers of the alleles sdw1.a/sdw1.e, sdw1.c, sdw1.d, and uzu1.a were used in the molecular screening of 32 height-contrasting barley accessions. This made it possible to identify the accessions with alleles sdw1.a/sdw1.e, sdw1.c, and sdw1.d of the HvGA20ox2 gene, as well as accessions with a combination of sdw1.c and uzu1.a alleles of the genes HvGA20ox2 and HvBRI1. A comparison of the results of genotyping and phenotyping showed that the presence of dwarfing alleles in all genotypes determines high or medium lodging resistance regardless of the influence of weather conditions. Twelve accessions were found to contain the new allele sdw1.ins of the HvGA20ox2 gene, which differs from the known allele sdw1.c by a larger size of PCR products. It is characterized by the Thalos_2 transposon insertion; the subsequent GTTA insertion, common with the sdw1.c allele; and by a single-nucleotide G→A substitution at the 165 position.
Databáze: Directory of Open Access Journals