Format-tuning of in vivo-launched bispecific T cell engager enhances efficacy against renal cell carcinoma

Autor: Carl H June, David Weiner, Christopher A Chuckran, Daniel Park, Ryan P O’Connell, Kevin Liaw, Nils Wellhausen, Pratik S Bhojnagarwala, Devivasha Bordoloi, Nicholas Shupin, Daniel Kulp
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal for ImmunoTherapy of Cancer, Vol 12, Iss 6 (2024)
Druh dokumentu: article
ISSN: 2023-0087
2051-1426
DOI: 10.1136/jitc-2023-008733
Popis: Background Advanced clear cell renal cell carcinoma (ccRCC) is a prevalent kidney cancer for which long-term survival rates are abysmal, though immunotherapies are showing potential. Not yet clinically vetted are bispecific T cell engagers (BTEs) that activate T cell-mediated cancer killing through intercellular synapsing. Multiple BTE formats exist, however, with limited cross-characterizations to help optimize new drug design. Here, we developed BTEs to treat ccRCC by targeting carbonic anhydrase 9 (CA9) while characterizing the persistent BTE (PBTE) format and comparing it to a new format, the persistent multivalent T cell engager (PMTE). These antibody therapies against ccRCC are developed as both recombinant and synthetic DNA (synDNA) medicines.Methods Antibody formatting effects on binding kinetics were assessed by flow cytometry and intercellular synaptic strength assays while potency was tested using T-cell activation and cytotoxicity assays. Mouse models were used to study antibody plasma and tumor pharmacokinetics, as well as antitumor efficacy as both recombinant and synDNA medicines. Specifically, three models using ccRCC cell line xenografts and human donor T cells in immunodeficient mice were used to support this study.Results Compared with a first-generation BTE, we show that the PBTE reduced avidity, intercellular synaptic strength, cytotoxic potency by as much as 33-fold, and ultimately efficacy against ccRCC tumors in vivo. However, compared with the PBTE, we demonstrate that the PMTE improved cell avidity, restored intercellular synapses, augmented cytotoxic potency by 40-fold, improved tumor distribution pharmacokinetics by 2-fold, and recovered synDNA efficacy in mouse tumor models by 20-fold. All the while, the PMTE displayed a desirable half-life of 4 days in mice compared with the conventional BTE’s 2 hours.Conclusions With impressive efficacy, the CA9-targeted PMTE is a promising new therapy for advanced ccRCC, which can be effectively delivered through synDNA. The highly potent PMTE format itself is a promising new tool for future applications in the multispecific antibody space.
Databáze: Directory of Open Access Journals