Development and validation of data quality rules in administrative health data using association rule mining

Autor: Mingkai Peng, Sangmin Lee, Adam G. D’Souza, Chelsea T. A. Doktorchik, Hude Quan
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: BMC Medical Informatics and Decision Making, Vol 20, Iss 1, Pp 1-10 (2020)
Druh dokumentu: article
ISSN: 1472-6947
DOI: 10.1186/s12911-020-1089-0
Popis: Abstract Background Data quality assessment presents a challenge for research using coded administrative health data. The objective of this study is to develop and validate a set of coding association rules for coded diagnostic data. Methods We used the Canadian re-abstracted hospital discharge abstract data coded in International Classification of Disease, 10th revision (ICD-10) codes. Association rule mining was conducted on the re-abstracted data in four age groups (0–4, 20–44, 45–64; ≥ 65) to extract ICD-10 coding association rules at the three-digit (category of diagnosis) and four-digit levels (category of diagnosis with etiology, anatomy, or severity). The rules were reviewed by a panel of 5 physicians and 2 classification specialists using a modified Delphi rating process. We proposed and defined the variance and bias to assess data quality using the rules. Results After the rule mining process and the panel review, 388 rules at the three-digit level and 275 rules at the four-digit level were developed. Half of the rules were from the age group of ≥65. Rules captured meaningful age-specific clinical associations, with rules at the age group of ≥65 being more complex and comprehensive than other age groups. The variance and bias can identify rules with high bias and variance in Alberta data and provides directions for quality improvement. Conclusions A set of ICD-10 data quality rules were developed and validated by a clinical and classification expert panel. The rules can be used as a tool to assess ICD-coded data, enabling the monitoring and comparison of data quality across institutions, provinces, and countries.
Databáze: Directory of Open Access Journals