Autor: |
Hai-yun Deng, Jue-liang Zhou, Yu-bo He |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 5, Pp 10579-10595 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2023537?viewType=HTML |
Popis: |
In this paper, we consider the existence of periodic solutions for a class of nonlinear difference systems involving classical $ (\phi_{1}, \phi_{2}) $-Laplacian. By using the least action principle, we obtain that the system with classical $ (\phi_{1}, \phi_{2}) $-Laplacian has at least one periodic solution when potential function is $ (p, q) $-sublinear growth condition, subconvex condition. The results obtained generalize and extend some known works. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|