Autor: |
Bin Zhao, Xuetong Shi, Sergei Khakalo, Yang Meng, Arttu Miettinen, Tuomas Turpeinen, Shuyi Mi, Zhipei Sun, Alexey Khakalo, Orlando J. Rojas, Bruno D. Mattos |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-12 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-43594-4 |
Popis: |
Abstract Light is a powerful and sustainable resource, but it can be detrimental to the performance and longevity of optical devices. Materials with near-zero light reflectance, i.e. superblack materials, are sought to improve the performance of several light-centered technologies. Here we report a simple top-down strategy, guided by computational methods, to develop robust superblack materials following metal-free wood delignification and carbonization (1500 °C). Subwavelength severed cells evolve under shrinkage stresses, yielding vertically aligned carbon microfiber arrays with a thickness of ~100 µm and light reflectance as low as 0.36% and independent of the incidence angle. The formation of such structures is rationalized based on delignification method, lignin content, carbonization temperature and wood density. Moreover, our measurements indicate a laser beam reflectivity lower than commercial light stoppers in current use. Overall, the wood-based superblack material is introduced as a mechanically robust surrogate for microfabricated carbon nanotube arrays. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|