Autor: |
Seyedeh Zahra Hamedi, Hassan Emami, Maryam Khayamzadeh, Reza Rabiei, Mehrad Aria, Majid Akrami, Vahid Zangouri |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-81734-y |
Popis: |
Abstract Breast cancer is one of the most prevalent cancers with an increasing trend in both incidence and mortality rates in Iran. Survival analysis is a pivotal measure in setting appropriate care plans. To the best of our knowledge, this study is pioneering in Iran, introducing a multi-method approach using a Deep Neural Network (DNN) and 11 conventional machine learning (ML) methods to predict the 5 year survival of women with breast cancer. Supplying data from two centers comprising a total of 2644 records and incorporating external validation further distinguishes the study. Thirty-four features were selected based on a literature review and common variables in both datasets. Feature selection was also performed using a p value criterion ( |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|