Application of machine learning in breast cancer survival prediction using a multimethod approach

Autor: Seyedeh Zahra Hamedi, Hassan Emami, Maryam Khayamzadeh, Reza Rabiei, Mehrad Aria, Majid Akrami, Vahid Zangouri
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-81734-y
Popis: Abstract Breast cancer is one of the most prevalent cancers with an increasing trend in both incidence and mortality rates in Iran. Survival analysis is a pivotal measure in setting appropriate care plans. To the best of our knowledge, this study is pioneering in Iran, introducing a multi-method approach using a Deep Neural Network (DNN) and 11 conventional machine learning (ML) methods to predict the 5 year survival of women with breast cancer. Supplying data from two centers comprising a total of 2644 records and incorporating external validation further distinguishes the study. Thirty-four features were selected based on a literature review and common variables in both datasets. Feature selection was also performed using a p value criterion (
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje