Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit

Autor: Phung Tran Huy Nhat, Nguyen Van Hao, Phan Vinh Tho, Hamideh Kerdegari, Luigi Pisani, Le Ngoc Minh Thu, Le Thanh Phuong, Ha Thi Hai Duong, Duong Bich Thuy, Angela McBride, Miguel Xochicale, Marcus J. Schultz, Reza Razavi, Andrew P. King, Louise Thwaites, Nguyen Van Vinh Chau, Sophie Yacoub, VITAL Consortium, Alberto Gomez
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Critical Care, Vol 27, Iss 1, Pp 1-8 (2023)
Druh dokumentu: article
ISSN: 1364-8535
DOI: 10.1186/s13054-023-04548-w
Popis: Abstract Background Interpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we developed an AI solution that assists LUS practitioners and assessed its usefulness in a low resource ICU. Methods This was a three-phase prospective study. In the first phase, the performance of four different clinical user groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool. Results The average accuracy of beginners’ LUS interpretation was 68.7% [95% CI 66.8–70.7%] compared to 72.2% [95% CI 70.0–75.6%] in intermediate, and 73.4% [95% CI 62.2–87.8%] in advanced users. Experts had an average accuracy of 95.0% [95% CI 88.2–100.0%], which was significantly better than beginners, intermediate and advanced users (p
Databáze: Directory of Open Access Journals