Anti-Oxidant and Anti-Aging Activities of Callus Culture from Three Rice Varieties

Autor: Wannisa Vichit, Nisakorn Saewan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Cosmetics, Vol 9, Iss 4, p 79 (2022)
Druh dokumentu: article
ISSN: 2079-9284
DOI: 10.3390/cosmetics9040079
Popis: The aims of this study were to induce calli from the seeds of three rice varieties (Hommali 105, Munpu, and Niawdum) and investigate their anti-aging potential. First, rice seeds were cultured on a Murashige and Skoog medium (MS medium) supplemented with 2 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1 mg/L of 1-Naphthalene acetic acid (NAA), and 1 mg/L of 6-Benzylaminopurine (BAP). After three weeks, the calli were extracted with ethanol. Then, their phenolic contents were determined by spectrophotometer and the amino acids were identified by ultra-performance liquid chromatography (UPLC). Their cytotoxicity, anti-oxidant (potassium ferricyanide reducing power assay (PFRAP), DPPH radical scavenging assay (DPPH), lipid peroxidation inhibition (LPO), and superoxide dismutase activity (SOD)), and anti-aging (keratinocyte proliferation, anti-collagenase, anti-inflammation, and anti-tyrosinase) activities were also investigated. Munpu callus (385%) was obtained with a higher yield than Hommali (322%) and Niawdum (297%) calli. The results revealed that the phenolic and amino acid contents were enhanced in the calli. Moreover, the calli were rich in glutamic acid, alanine, and gamma aminobutyric acid (GABA). The callus extracts showed no cytotoxic effects at a concentration of equal to or lower than 0.25 mg/mL. The highest anti-oxidant activities (PFRAP (0.81 mg AAE/mL), DPPH (68.22%), LPO (52.21%), and SOD (67.16%)) was found in Munpu callus extract. This extract also had the highest keratinocyte proliferation (43.32%), anti-collagenase (53.83%), anti-inflammation (85.40%), and anti-tyrosinase (64.77%) activities. The experimental results suggest that the amounts of bioactive compounds and anti-aging activities of rice seeds can be enhanced by the induction of callus formation.
Databáze: Directory of Open Access Journals