Autor: |
Saad Aldoihi, Abdulrahman Mallah, Abdullah H. Alluhayb, Mohamed R. Elamin, Nuha Y. Elamin, Laila S. Alqarni, Mohamed Ali Ben Aissa, Abueliz Modwi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Science: Advanced Materials and Devices, Vol 9, Iss 3, Pp 100742- (2024) |
Druh dokumentu: |
article |
ISSN: |
2468-2179 |
DOI: |
10.1016/j.jsamd.2024.100742 |
Popis: |
Toxic metals in water systems pose a global health risk. Thus, multifunctional water monitoring and treatment materials are indispensable. Nickel ions, a frequent heavy metal pollutant, affect ecosystem function. However, developing affordable, functional materials for efficient heavy metal removal remains problematic. This study investigates the utilization of Al2O3@g-C3N4 (AlCN) nanosorbent for adsorbing Ni (II) ions from aqueous solutions. The physicochemical analyses verify the creation of an AlCN nanosorbent with a mean size of 31.25 nm crystals and a specific surface area of 58 m2/g. Batch adsorption experiments were conducted to examine the impact of pH, initial Ni (II) concentration, and adsorbent dose on the efficiency of Ni (II) removal using the synthesized (AlCN) nanosorbent. Adding Al2O3 to g-C3N4 nanosheets increased the adsorption capacity to a maximum of 410 mg/g under ideal conditions, as demonstrated by the results. Ni (II) ions adsorption kinetics on AlCN nanosorbents follow the pseudo-second-order kinetic model with an R2 value of 0.99, surpassing the Elovich pseudo-first model. The adsorption isotherm results show that the Langmuir model fits the experimental data better than the Freundlich and Temkin models, indicating a monolayer adsorption process for the AlCN nanosorbent. In addition, the AlCN exhibited multi-elemental adsorption ability and good recyclability. These findings can nominate the fabricated composite as a candidate for water treatment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|