Fabrication, assessment, and optimization of alendronate sodium nanoemulsion-based injectable in-situ gel formulation for management of osteoporosis

Autor: Wesam H. Abdulaal, Khaled M. Hosny, Nabil A. Alhakamy, Rana B. Bakhaidar, Yasir Almuhanna, Fahad Y. Sabei, Mohammed Alissa, Mohammed Majrashi, Jawaher Abdullah Alamoudi, Mohannad S. Hazzazi, Ayman Jafer, Rasha A. Khallaf
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Drug Delivery, Vol 30, Iss 1 (2023)
Druh dokumentu: article
ISSN: 10717544
1521-0464
1071-7544
DOI: 10.1080/10717544.2022.2164094
Popis: AbstractLow bone mass, degeneration of bone tissue, and disruption of bone microarchitecture are all symptoms of the disease osteoporosis, which can decrease bone strength and increase the risk of fractures. The main objective of the current study was to use a phospholipid-based phase separation in-situ gel (PPSG) in combination with an alendronate sodium nanoemulsion (ALS-NE) to help prevent bone resorption in rats. The effect of factors such as concentrations of the ALS aqueous solution, surfactant Plurol Oleique CC 497, and Maisine CC oil on nanoemulsion characteristics such as stability index and globular size was investigated using an l-optimal coordinate exchange statistical design. Injectable PPSG with the best nanoemulsion formulation was tested for viscosity, gel strength, water absorption, and in-vitro ALS release. ALS retention in the rats’ muscles was measured after 30 days. The droplet size and stability index of the optimal nanoemulsion were 90 ± 2.0 nm and 85 ± 1.9%, respectively. When mixed with water, the optimal ALS-NE–loaded PPSG became viscous and achieved 36 seconds of gel strength, which was adequate for an injectable in-situ formulation. In comparison with the ALS solution–loaded in-situ gel, the newly created optimal ALS-NE–loaded PPSG produced the sustained and regulated release of ALS; hence, a higher percentage of ALS remained in rats’ muscles after 30 days. PPSG that has been loaded with an ALS-NE may therefore be a more auspicious, productive, and effective platform for osteoporosis treatment than conventional oral forms.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje