Route planning of mobile robot based on improved RRT star and TEB algorithm

Autor: Xiong Yin, Wentao Dong, Xiaoming Wang, Yongxiang Yu, Daojin Yao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-59413-9
Popis: Abstract This paper presents a fusion algorithm based on the enhanced RRT* TEB algorithm. The enhanced RRT* algorithm is utilized for generating an optimal global path. Firstly, proposing an adaptive sampling function and extending node bias to accelerate global path generation and mitigate local optimality. Secondly, eliminating path redundancy to minimize path length. Thirdly, imposing constraints on the turning angle of the path to enhance path smoothness. Conducting kinematic modeling of the mobile robot and optimizing the TEB algorithm to align the trajectory with the mobile robot's kinematics. The integration of these two algorithms culminates in the development of a fusion algorithm. Simulation and experimental results demonstrate that, in contrast to the traditional RRT* algorithm, the enhanced RRT* algorithm achieves a 5.8% reduction in path length and a 62.5% decrease in the number of turning points. Utilizing the fusion algorithm for path planning, the mobile robot generates a superior, seamlessly smooth global path, adept at circumventing obstacles. Furthermore, the local trajectory meticulously conforms to the kinematic constraints of the mobile robot.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje