Popis: |
Стаття присвячена розв'язку контактної задачі для попередньо напруженого циліндричного штампа та двох пружних півпросторів з початковими напруженнями в аналітичному вигляді без врахування сил тертя. Будемо вважати, що поверхні поза межею контакту залишаються вільними від впливу зовнішніх сил, а на межі контакту переміщення та напруження — неперервні. Задачу розв'язано у випадку нерівних коренів визначального рівняння. Дослідження представлено у загальному виді для теорії великих початкових деформацій і двох варіантів теорії малих початкових деформацій у межах лінеаризованої теорії пружності при довільній структурі пружного потенціалу. Припускається, що початкові стани пружного циліндричного штампа та пружних основ (півпросторів) однорідні та рівні. Дослідження проводиться в координатах початкового деформованого стану, які пов'язані з лагранжевими координатами (природного стану). Крім того, вплив циліндричного штампа викликає невеликі збурення відповідних величин основного напружено-деформованого стану. Також передбачається, що пружний циліндричний штамп та пружні півпростори виготовлені з різних ізотропних, трансверсально-ізотропних або композитних матеріалів. У випадку ортотропних тіл, будемо вважати, що пружно-еквівалентні напрямки співпадають із напрямком осей координат у деформованому стані. Наведені загальні розв'язки основних диференціальних рівнянь лінеаризованої теорії пружності у випадку осесиметричної деформації для скінченної циліндричної області. У результаті, розв'язки поставленої задачі представлені у вигляді нескінченних рядів, коефіцієнти яких визначаються з нескінченної системи алгебраїчних рівнянь. Відмітимо, що коефіцієнти системи залежать від величин, що визначають структуру пружного потенціалу та висоту пружного штампа. У статті також встановлено зв'язок між осіданням та рівнодіючою навантаження. Отже, за допомогою отриманих розв'язків можна вивчити вплив початкових (залишкових) напружень у двох пружних півпросторах та пружному циліндричному штампі на розподіл контактних напружень в області контакту. |