Tamoxifen induces radioresistance through NRF2-mediated metabolic reprogramming in breast cancer

Autor: F. V. Reinema, F. C. G. J. Sweep, G. J. Adema, W. J. M. Peeters, J. W. M. Martens, J. Bussink, P. N. Span
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Cancer & Metabolism, Vol 11, Iss 1, Pp 1-14 (2023)
Druh dokumentu: article
ISSN: 2049-3002
DOI: 10.1186/s40170-023-00304-4
Popis: Abstract Background Recently, we reported that tamoxifen-resistant (TAM-R) breast cancer cells are cross-resistant to irradiation. Here, we investigated the mechanisms associated with tamoxifen-induced radioresistance, aiming to prevent or reverse resistance and improve breast cancer treatment. Methods Wild-type ERα-positive MCF7 and ERα-negative MDA-MB-231 breast cancer cells and their TAM-R counterparts were analyzed for cellular metabolism using the Seahorse metabolic analyzer. Real-time ROS production, toxicity, and antioxidant capacity in response to H2O2, tamoxifen, and irradiation were determined. Tumor material from 28 breast cancer patients before and after short-term presurgical tamoxifen (ClinicalTrials.gov Identifier: NCT00738777, August 19, 2008) and cellular material was analyzed for NRF2 gene expression and immunohistochemistry. Re-sensitization of TAM-R cells to irradiation was established using pharmacological inhibition. Results TAM-R cells exhibited decreased oxygen consumption and increased glycolysis, suggesting mitochondrial dysfunction. However, this did not explain radioresistance, as cells without mitochondria (Rho-0) were actually more radiosensitive. Real-time measurement of ROS after tamoxifen and H2O2 exposure indicated lower ROS levels and toxicity in TAM-R cells. Consistently, higher antioxidant levels were found in TAM-R cells, providing protection from irradiation-induced ROS. NRF2, a main activator of the antioxidant response, was increased in TAM-R cells and in tumor tissue of patients treated with short-term presurgical tamoxifen. NRF2 inhibition re-sensitized TAM-R cells to irradiation. Conclusion Mechanisms underlying tamoxifen-induced radioresistance are linked to cellular adaptations to persistently increased ROS levels, leading to cells with chronically upregulated antioxidant capacity and glycolysis. Pharmacological inhibition of antioxidant responses re-sensitizes breast cancer cells to irradiation.
Databáze: Directory of Open Access Journals