The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Autor: | Leila Nasiri, Ali Sameripour |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Sahand Communications in Mathematical Analysis, Vol 10, Iss 1, Pp 37-46 (2018) |
Druh dokumentu: | article |
ISSN: | 2322-5807 2423-3900 |
DOI: | 10.22130/scma.2017.27152 |
Popis: | Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estimate the resolvent of the operator $L$ on the one-dimensional space $ L_{2}(Omega)$ using some analytic methods. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |