Asymptotic formulas for the left truncated moments of sums with consistently varying distributed increments
Autor: | Jonas Sprindys, Jonas Šiaulys |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Nonlinear Analysis, Vol 26, Iss 6 (2021) |
Druh dokumentu: | article |
ISSN: | 1392-5113 2335-8963 |
DOI: | 10.15388/namc.2021.26.24608 |
Popis: | In this paper, we consider the sum Snξ = ξ1 + ... + ξn of possibly dependent and nonidentically distributed real-valued random variables ξ1, ... , ξn with consistently varying distributions. By assuming that collection {ξ1, ... , ξn} follows the dependence structure, similar to the asymptotic independence, we obtain the asymptotic relations for E((Snξ)α1(Snξ > x)) and E((Snξ – x)+)α, where α is an arbitrary nonnegative real number. The obtained results have applications in various fields of applied probability, including risk theory and random walks. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |