Convolutional neural networks develop major organizational principles of early visual cortex when enhanced with retinal sampling

Autor: Danny da Costa, Lukas Kornemann, Rainer Goebel, Mario Senden
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-59376-x
Popis: Abstract Primate visual cortex exhibits key organizational principles: cortical magnification, eccentricity-dependent receptive field size and spatial frequency tuning as well as radial bias. We provide compelling evidence that these principles arise from the interplay of the non-uniform distribution of retinal ganglion cells, and a quasi-uniform convergence rate from the retina to the cortex. We show that convolutional neural networks outfitted with a retinal sampling layer, which resamples images according to retinal ganglion cell density, develop these organizational principles. Surprisingly, our results indicate that radial bias is spatial-frequency dependent and only manifests for high spatial frequencies. For low spatial frequencies, the bias shifts towards orthogonal orientations. These findings introduce a novel hypothesis about the origin of radial bias. Quasi-uniform convergence limits the range of spatial frequencies (in retinal space) that can be resolved, while retinal sampling determines the spatial frequency content throughout the retina.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje