Autor: |
Haviluddin Haviluddin, Zainal Arifin, Awang Harsa Kridalaksana, Dedy Cahyadi |
Jazyk: |
English<br />Indonesian |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Jurnal Teknologi dan Sistem Komputer, Vol 4, Iss 4, Pp 485-490 (2016) |
Druh dokumentu: |
article |
ISSN: |
2338-0403 |
DOI: |
10.14710/jtsiskom.4.4.2016.485-490 |
Popis: |
In this paper, a backpropagation neural network (BPNN) method with time series data have been explored. The BPNN method to predict the foreign tourist’s arrival to Indonesia datasets have been implemented. The foreign tourist’s arrival datasets were taken from the center agency on statistics (BPS) Indonesia. The experimental results showed that the BPNN method with two hidden layers were able to forecast foreign tourist’s arrival to Indonesia. Where, the mean square error (MSE) as forecasting accuracy has been indicated. In this study, the BPNN method is able and recommended to be alternative methods for predicting time series datasets. Also, the BPNN method showed that effective and easy to use. In other words, BPNN method is capable to producing good value of forecasting. Keywords - BPNN; foreign tourists; BPS; MSE Pemanfaatan backpropagation neural network (BPNN) dengan data deret waktu telah digunakan dalam paper ini. Metode BPNN telah digunakan untuk memprediksi data kedatangan turis asing ke Indonesia, dimana data turis tersebut diambil dari badan pusat statistik Indonesia (BPS). Hasil pengujian menunjukkan bahwa metode BPNN dengan dua lapisan tersembunyi mampu memodelkan dan meramalkan data kedatangan turis asing ke Indonesia yang diindikasikan dengan nilai mean square error (MSE). Penelitian ini merekomendasikan bahwa metode BPNN mampu menjadi alternative metode dalam memprediksi data yang berjenis deret waktu karena metode BPNN efektif dan lebih mudah digunakan serta mampu menghasilkan akurasi nilai peramalan yang baik. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|