Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces

Autor: Adamowicz Tomasz, Kijowski Antoni, Soultanis Elefterios
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Analysis and Geometry in Metric Spaces, Vol 10, Iss 1, Pp 344-372 (2022)
Druh dokumentu: article
ISSN: 2299-3274
DOI: 10.1515/agms-2022-0143
Popis: We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Hölder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajłasz–Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
Databáze: Directory of Open Access Journals