Autor: |
Sukhpal Singh Ghuman, Emanuele Giaquinta, Jorma Tarhio |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Algorithms, Vol 12, Iss 6, p 124 (2019) |
Druh dokumentu: |
article |
ISSN: |
1999-4893 |
DOI: |
10.3390/a12060124 |
Popis: |
We present two modifications of Duval’s algorithm for computing the Lyndon factorization of a string. One of the algorithms has been designed for strings containing runs of the smallest character. It works best for small alphabets and it is able to skip a significant number of characters of the string. Moreover, it can be engineered to have linear time complexity in the worst case. When there is a run-length encoded string R of length ρ , the other algorithm computes the Lyndon factorization of R in O ( ρ ) time and in constant space. It is shown by experimental results that the new variations are faster than Duval’s original algorithm in many scenarios. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|