Popis: |
Abstract In recent years, global energy demand has surged, emphasizing the need for nations to enhance energy resources. The photovoltaic thermal (PV/T) system, capable of generating electrical energy from sunlight, is a promising renewable energy solution. However, it faces the challenge of overheating, which reduces efficiency. To address this, we introduce a flow channel within the PV/T system, allowing coolant circulation to improve electrical efficiency. Within this study, we explore into the workings of a PV/T system configuration, featuring a polycrystalline silicon panel atop a copper absorber panel. This innovative setup incorporates a rectangular flow channel, enhanced with a centrally positioned rotating circular cylinder, designed to augment flow velocity. This arrangement presents a forced convection scenario, where heat transfer primarily occurs through conduction in the uppermost two layers, while the flow channel beneath experiences forced convection. To capture this complex phenomenon, we accurately address the two-dimensional Navier–Stokes and energy equations, employing simulations conducted via COMSOL 6.0 software, renowned for its utilization of the finite element method. To optimize heat dissipation and efficiency, we introduce a hybrid nanofluid comprised of titanium oxide and silver nanoparticles dispersed in water, circulating through the flow channel. Various critical parameters come under scrutiny, including the Reynolds number, explored across the range of 100–1000, the volume fractions of both nanoparticle types, systematically tested within the range of 0.001–0.05, and the controlled speed of the circular cylinder, maintained within the range of 0.1–0.25 m/s. It was found that incorporating silver nanoparticles as a suspended component is more effective in enhancing PV/T efficiency than the addition of titanium oxide. Additionally, maintaining the volume fraction of titanium oxide between 4 and 5% yields improved efficiency, provided that the cylinder rotates at a higher speed. It was observed that cell efficiency can be regulated by adjusting four parameters, such as the Reynolds number, cylinder rotation speed, and the volume fraction of both nanoparticles. |