Autor: |
Yutong Cui, Zichen Luo, Xiaobo Wang, Shiqi Liang, Guangbing Hu, Xinrui Chen, Ji Zuo, Lu Zhou, Haiyang Guo, Xianfei Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
BMC Gastroenterology, Vol 24, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
1471-230X |
DOI: |
10.1186/s12876-024-03442-1 |
Popis: |
Abstract Objective Submucosal infiltration of less than 200 μm is considered an indication for endoscopic surgery in cases of superficial esophageal cancer and precancerous lesions. This study aims to identify the risk factors associated with submucosal infiltration exceeding 200 micrometers in early esophageal cancer and precancerous lesions, as well as to establish and validate an accompanying predictive model. Methods Risk factors were identified through least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. Various machine learning (ML) classification models were tested to develop and evaluate the most effective predictive model, with Shapley Additive Explanations (SHAP) employed for model visualization. Results Predictive factors for early esophageal invasion into the submucosa included endoscopic ultrasonography or magnifying endoscopy> SM1(P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|