Deconvolution beamforming based on a fast gradient algorithm for sound source localization
Autor: | Ming Zan, Zhongming Xu, Zhifei Zhang, Zhonghua Tang, Linsen Huang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Low Frequency Noise, Vibration and Active Control, Vol 42 (2023) |
Druh dokumentu: | article |
ISSN: | 1461-3484 2048-4046 14613484 88484572 |
DOI: | 10.1177/14613484221136047 |
Popis: | Deconvolution beamforming has gotten increased attention as a way to improve the spatial resolution of delay-and-sum beamforming. It has the ability to decrease sidelobes and increase resolution. However, compared to conventional beamforming, the extra computation of the deconvolution method is a drawback. A more efficient approach is developed to improve the computing speed of the deconvolution method. Specifically, when tackling deconvolution problems, this method improves computational performance by combining Fourier operation with a fast gradient algorithm called the double momentum gradient algorithm. We compare the proposed method with two known effective deconvolution methods, namely the fast Fourier transform non-negative least squares algorithm and the fast iterative shrinkage threshold algorithm. The results of simulation and experiment reveal that the proposed method tends to give a better spatial resolution within a short computational time and is more suitable for engineering applications. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |