Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid

Autor: Shin-ichi Ohkoshi, Kosuke Nakagawa, Marie Yoshikiyo, Asuka Namai, Kenta Imoto, Yugo Nagane, Fangda Jia, Olaf Stefanczyk, Hiroko Tokoro, Junhao Wang, Takeshi Sugahara, Kouji Chiba, Kazuhiko Motodohi, Kazuo Isogai, Koki Nishioka, Takashi Momiki, Ryu Hatano
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-44350-4
Popis: Abstract Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese–iron–cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to −17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid–solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg−1 and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m−1 K−1. The present barocaloric material may realize a high-efficiency solid refrigerant.
Databáze: Directory of Open Access Journals