Community-based participatory research application of an artificial intelligence-enhanced electrocardiogram for cardiovascular disease screening: A FAITH! Trial ancillary study

Autor: David M. Harmon, Demilade Adedinsewo, Jeremy R. Van't Hof, Matthew Johnson, Sharonne N. Hayes, Francisco Lopez-Jimenez, Clarence Jones, Zachi I. Attia, Paul A. Friedman, Christi A. Patten, Lisa A. Cooper, LaPrincess C. Brewer
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: American Journal of Preventive Cardiology, Vol 12, Iss , Pp 100431- (2022)
Druh dokumentu: article
ISSN: 2666-6677
DOI: 10.1016/j.ajpc.2022.100431
Popis: Objective: With the emergence of artificial intelligence (AI)-based health interventions, systemic racism remains a concern as these advancements are frequently developed without race-specific data analysis or validation. To evaluate the potential utility of an AI-based cardiovascular diseases (CVD) screening tool in an under-resourced African-American cohort, we reviewed the AI-enhanced electrocardiogram (ECG) data of participants enrolled in a community-based clinical trial as a proof-of-concept ancillary study for community-based screening. Methods: Enrollees completed cardiovascular testing including standard 12-lead ECG and a limited echocardiogram (TTE). All ECGs were analyzed using previously published institution-based AI algorithms. AI-ECG predictions were generated for age, sex, and decreased left ventricular ejection fraction (LVEF). Diagnostic accuracy of the AI-ECG for decreased LVEF and sex was quantified using area under the receiver operating characteristic curve (AUC). Correlation between actual age and AI-ECG predicted age was assessed using Pearson correlation coefficients. Results: Fifty-four participants completed both an ECG and TTE (mean age 55 years [range 31-87 years]; 66.7% female). All participants were in sinus rhythm, and the median LVEF of the cohort was 60-65%. The AI-ECG for decreased LVEF demonstrated excellent performance with an AUC of 0.892 (95% confidence interval [CI] 0.708-1); sensitivity=50% (95% CI 9.5-90.5%; n=1/2) and specificity=96% (95% CI 86.8-98.9%; n=49/51). The AI-ECG for participant sex demonstrated similar performance with AUC of 0.944 (95% CI 0.891-0.998); sensitivity=100% (95% CI 82.4-100.0%; n=18/18) and specificity=77.8% (95% CI 61.9-88.3%; n=28/36). The AI-ECG predicted mean age was 55 years (range 26.9-72.6 years) with a strong correlation to actual age (R=0.769; p
Databáze: Directory of Open Access Journals