A Method for Optimizing and Spatially Distributing Heating Systems by Coupling an Urban Energy Simulation Platform and an Energy System Model

Autor: Annette Steingrube, Keyu Bao, Stefan Wieland, Andrés Lalama, Pithon M. Kabiro, Volker Coors, Bastian Schröter
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Resources, Vol 10, Iss 5, p 52 (2021)
Druh dokumentu: article
ISSN: 2079-9276
DOI: 10.3390/resources10050052
Popis: District heating is seen as an important concept to decarbonize heating systems and meet climate mitigation goals. However, the decision related to where central heating is most viable is dependent on many different aspects, like heating densities or current heating structures. An urban energy simulation platform based on 3D building objects can improve the accuracy of energy demand calculation on building level, but lacks a system perspective. Energy system models help to find economically optimal solutions for entire energy systems, including the optimal amount of centrally supplied heat, but do not usually provide information on building level. Coupling both methods through a novel heating grid disaggregation algorithm, we propose a framework that does three things simultaneously: optimize energy systems that can comprise all demand sectors as well as sector coupling, assess the role of centralized heating in such optimized energy systems, and determine the layouts of supplying district heating grids with a spatial resolution on the street level. The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town. In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter, central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more expensive than decentral heating technologies.
Databáze: Directory of Open Access Journals