Online Adaptive Set of Virtual Voltage Vectors for Stator Current Regulation of a Six-Phase Induction Machine Using Finite State Model Predictive Controllers
Autor: | Manuel R. Arahal, Manuel G. Satué, Federico Barrero, Cristina Martín |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Applied Sciences, Vol 13, Iss 7, p 4113 (2023) |
Druh dokumentu: | article |
ISSN: | 13074113 2076-3417 |
DOI: | 10.3390/app13074113 |
Popis: | Virtual voltage vectors (VVV) have been used for the control of multi-phase induction machines, where different sub-spaces appear related to the torque production and losses generation. In the literature, several sets of VVV have been used, aiming at reducing harmonic content while maintaining a low computational burden. This paper proposes the use of different sets of VVV to regulate the stator current of multi-phase drives using finite-state model predictive controllers. In the proposal, only one set is active at each control period. This active set is obtained through a preliminary analysis using performance maps. As a result, a method is derived for the online selection using the current operating point. The selection is based on a simple computation from variables usually measured on variable-speed drives. Results are provided for a symmetrical six-phase IM, showing that the proposal improves the closed-loop performance of the multi-phase drive with a low computational cost. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |