On generalized characteristics of smoothness of functions and on average $\nu$-widths in the space $L_2(\mathbb{R})$
Autor: | S.B. Vakarchuk, M.B. Vakarchuk |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Researches in Mathematics, Vol 27, Iss 1, Pp 14-27 (2019) |
Druh dokumentu: | article |
ISSN: | 2664-4991 2664-5009 |
DOI: | 10.15421/241902 |
Popis: | Estimates above and estimates below have been obtained for Kolmogorov, linear and Bernshtein average $\nu$-widths on the classes of functions $W^r (\omega^w, \Psi)$, where $r \in \mathbb{N}$, $\omega^w(f)$ is the generalized characteristic of smoothness of a function $f \in L_2(\mathbb{R})$, $\Psi$ is a majorant. Exact values of the enumerated extremal characteristics of approximation, following from the one condition on the majorant were obtained too. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |