Autor: |
Myungsuk Kim, M. Nazmul Huda, Levi W. Evans, Excel Que, Erik R. Gertz, Nobuyo Maeda-Smithies, Brian J. Bennett |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-17 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-35917-8 |
Popis: |
Abstract Atherogenesis is an insipidus but precipitating process leading to serious consequences of many cardiovascular diseases (CVD). Numerous genetic loci contributing to atherosclerosis have been identified in human genome-wide association studies, but these studies have limitations in the ability to control environmental factors and to decipher cause/effect relationships. To assess the power of hyperlipidemic Diversity Outbred (DO) mice in facilitating quantitative trait loci (QTL) analysis of complex traits, we generated a high-resolution genetic panel of atherosclerosis susceptible (DO-F1) mouse cohort by crossing 200 DO females with C57BL/6J males carrying two human genes: encoding apolipoprotein E3-Leiden and cholesterol ester transfer protein. We examined atherosclerotic traits including plasma lipids and glucose in the 235 female and 226 male progeny before and after 16 weeks of a high-fat/cholesterol diet, and aortic plaque size at 24 weeks. We also assessed the liver transcriptome using RNA-sequencing. Our QTL mapping for atherosclerotic traits identified one previously reported female-specific QTL on Chr10 with a narrower interval of 22.73 to 30.80 Mb, and one novel male-specific QTL at 31.89 to 40.25 Mb on Chr19. Liver transcription levels of several genes within each QTL were highly correlated with the atherogenic traits. A majority of these candidates have already known atherogenic potential in humans and/or mice, but integrative QTL, eQTL, and correlation analyses further pointed Ptprk as a major candidate of the Chr10 QTL, while Pten and Cyp2c67 of the Chr19 QTL in our DO-F1 cohort. Finally, through additional analyses of RNA-seq data we identified genetic regulation of hepatic transcription factors, including Nr1h3, contributes to atherogenesis in this cohort. Thus, an integrative approach using DO-F1 mice effectively validates the influence of genetic factors on atherosclerosis in DO mice and suggests an opportunity to discover therapeutics in the setting of hyperlipidemia. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|