Autor: |
Claudia Valls |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 6, p 885 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8060885 |
Popis: |
In this paper we deal with Abel equations of the form d y / d x = A 1 ( x ) y + A 2 ( x ) y 2 + A 3 ( x ) y 3 , where A 1 ( x ) , A 2 ( x ) and A 3 ( x ) are real polynomials and A 3 ≢ 0 . We prove that these Abel equations can have at most two rational (non-polynomial) limit cycles when A 1 ≢ 0 and three rational (non-polynomial) limit cycles when A 1 ≡ 0 . Moreover, we show that these upper bounds are sharp. We show that the general Abel equations can always be reduced to this one. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|