Emotion Classification Based on Transformer and CNN for EEG Spatial–Temporal Feature Learning

Autor: Xiuzhen Yao, Tianwen Li, Peng Ding, Fan Wang, Lei Zhao, Anmin Gong, Wenya Nan, Yunfa Fu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Brain Sciences, Vol 14, Iss 3, p 268 (2024)
Druh dokumentu: article
ISSN: 14030268
2076-3425
DOI: 10.3390/brainsci14030268
Popis: Objectives: The temporal and spatial information of electroencephalogram (EEG) signals is crucial for recognizing features in emotion classification models, but it excessively relies on manual feature extraction. The transformer model has the capability of performing automatic feature extraction; however, its potential has not been fully explored in the classification of emotion-related EEG signals. To address these challenges, the present study proposes a novel model based on transformer and convolutional neural networks (TCNN) for EEG spatial–temporal (EEG ST) feature learning to automatic emotion classification. Methods: The proposed EEG ST-TCNN model utilizes position encoding (PE) and multi-head attention to perceive channel positions and timing information in EEG signals. Two parallel transformer encoders in the model are used to extract spatial and temporal features from emotion-related EEG signals, and a CNN is used to aggregate the EEG’s spatial and temporal features, which are subsequently classified using Softmax. Results: The proposed EEG ST-TCNN model achieved an accuracy of 96.67% on the SEED dataset and accuracies of 95.73%, 96.95%, and 96.34% for the arousal–valence, arousal, and valence dimensions, respectively, for the DEAP dataset. Conclusions: The results demonstrate the effectiveness of the proposed ST-TCNN model, with superior performance in emotion classification compared to recent relevant studies. Significance: The proposed EEG ST-TCNN model has the potential to be used for EEG-based automatic emotion recognition.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje