Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization

Autor: B. Razmi, R. Ghasemi-Fasaei, A. Ronaghi, R. Mostowfizadeh-Ghalamfarsa
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Ecotoxicology and Environmental Safety, Vol 207, Iss , Pp 111315- (2021)
Druh dokumentu: article
ISSN: 0147-6513
DOI: 10.1016/j.ecoenv.2020.111315
Popis: Growing environmental concern regarding multi elements-contaminated soils reveals the necessity of paying more attention to environmentally friendly remediation techniques such as phytoremediation. A large number of factors influences phytoremediation of potentially toxic elements (PTEs) and investigation on a variety of these factors need appropriate statistical approaches such as “Taguchi optimization” which effectively decreases time and cost of experiments. In the present study, based on the Taguchi optimization method, the effects of several biological (plant type and mycorrhizal fungi (AMF)) and chemical (chelating agents, surfactants and organic acids) factors, on the phytoremediation of soils contaminated with zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were investigated. The goal was to find out the most effective factors as well as the best level for each factor. The values of dry weights in roots and aerial parts of the studied plants were in orders of maize > sorghum > sunflower and sorghum > maize > sunflower, respectively. AMF was the main factor in increasing dry weight of shoots. Inoculation of AMF caused increases in root and shoot uptake of some PTEs. Results: showed that phytoremediation of PTEs is element-dependent; as Zn showed the highest translocation factor (TF) and bioconcentration factor (BCF) values, while Ni showed the lowest ones and the intermediate values belonged to Pb and Cd. These results show the diverse distribution of elements in plant parts, as Zn and Ni were mostly accumulated in shoot and root, respectively. Although different factors caused impacts on phytoremediation criteria, the role of plant type in the phytoremediation of PTEs was at the first rank. Mean TF of PTEs in sunflower was 6.3 times that of maize. Sunflower showed high TF value for the four elements and translocated most of the PTEs from root to the aerial parts demonstrating phytoextraction as the main mechanism in this plant. Maize and sorghum, however, showed low TF and accumulated most of PTEs in their roots revealing phytostabilization as the main mechanism. In general, it can be concluded that plant type was the most influential factor in the phytoremediation of PTEs followed by EDTA and AMF. Taguchi optimization revealed the appropriateness and significance of different chemical and biological treatments on phytoremediation criteria of different elements.
Databáze: Directory of Open Access Journals