Autor: |
Étienne Clabaut, Samuel Foucher, Yacine Bouroubi, Mickaël Germain |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 5, p 818 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16050818 |
Popis: |
Satellite observations provide critical data for a myriad of applications, but automated information extraction from such vast datasets remains challenging. While artificial intelligence (AI), particularly deep learning methods, offers promising solutions for land cover classification, it often requires massive amounts of accurate, error-free annotations. This paper introduces a novel approach to generate a segmentation task dataset with minimal human intervention, thus significantly reducing annotation time and potential human errors. ‘Samples’ extracted from actual imagery were utilized to construct synthetic composite images, representing 10 segmentation classes. A DeepResUNet was solely trained on this synthesized dataset, eliminating the need for further fine-tuning. Preliminary findings demonstrate impressive generalization abilities on real data across various regions of Quebec. We endeavored to conduct a quantitative assessment without reliance on manually annotated data, and the results appear to be comparable, if not superior, to models trained on genuine datasets. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|