Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells
Autor: | Marris-Morini Delphine, Chaisakul Papichaya, Rouifed Mohamed-Saïd, Frigerio Jacopo, Chrastina Daniel, Isella Giovanni, Edmond Samson, Le Roux Xavier, Coudevylle Jean-René, Vivien Laurent |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Nanophotonics, Vol 2, Iss 4, Pp 279-288 (2013) |
Druh dokumentu: | article |
ISSN: | 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2013-0018 |
Popis: | Despite being an indirect bandgap material, germanium (Ge) recently appeared as a material of choice for low power consumption optical link on silicon. Thanks to a low energy difference between direct and indirect energy bandgap, optical transitions around the direct gap can be used to achieve strong electroabsorption or photodetection in a material already used in microelectronics circuits. However, many challenges have to be addressed such as the growth of germanium-rich structures on silicon or the modeling of these structures around both direct and indirect bandgaps. This paper will explore recent achievements in Ge/SiGe quantum wells structures. Quantum confined Stark effect has been studied for different quantum well designs and light polarization. Both absorption and phase variations have been characterized and will be reported. Carrier recombination processes is also an intense research topic, in order to evaluate the competition between direct and indirect band gap emission as a function of temperature. Main results and conclusion will be introduced. Finally, high performance photonic devices (modulator and photodetector) that have already been demonstrated will be presented. At the end the challenges faced by Ge/SiGe QW as a new photonic platform will be presented. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |