Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study

Autor: Elisa Poyatos-Racionero, Isabel González-Álvarez, Paola Sánchez-Moreno, Leopoldo Sitia, Francesca Gatto, Pier Paolo Pompa, Elena Aznar, Marta González-Álvarez, Ramón Martínez-Máñez, María Dolores Marcos, Andrea Bernardos
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Pharmaceutics, Vol 13, Iss 7, p 982 (2021)
Druh dokumentu: article
ISSN: 1999-4923
DOI: 10.3390/pharmaceutics13070982
Popis: Mesoporous silica microparticles functionalized with lactose for the specific release of essential oil components (EOCs) in the small intestine are presented. In vitro and in vivo intestinal models were applied to validate the microparticles (M41-EOC-L), in which the presence of lactase acts as the triggering stimulus for the controlled release of EOCs. Among the different microdevices prepared (containing thymol, eugenol and cinnamaldehyde), the one loaded with cinnamaldehyde showed the most significant Caco-2 cell viability reduction. On the other hand, interaction of the particles with enterocyte-like monolayers showed a reduction of EOCs permeability when protected into the designed microdevices. Then, a microdevice loaded with cinnamaldehyde was applied in the in vivo model of Wistar rat. The results showed a reduction in cinnamaldehyde plasma levels and an increase in its concentration in the lumen of the gastrointestinal tract (GIT). The absence of payload release in the stomach, the progressive release throughout the intestine and the prolonged stay of the payload in the GIT-lumen increased the bioavailability of the encapsulated compound at the site of the desired action. These innovative results, based on the specific intestinal controlled delivery, suggest that the M41-payload-L could be a potential hybrid microdevice for the protection and administration of bioactive molecules in the small intestine and colon.
Databáze: Directory of Open Access Journals