Research on Spatiotemporal Continuous Information Perception of Overburden Compression–Tensile Strain Transition Zone during Mining and Integrated Safety Guarantee System

Autor: Gang Cheng, Ziyi Wang, Bin Shi, Tianlu Cai, Minfu Liang, Jinghong Wu, Qinliang You
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 17, p 5856 (2024)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s24175856
Popis: The mining of deep underground coal seams induces the movement, failure, and collapse of the overlying rock–soil body, and the development of this damaging effect on the surface causes ground fissures and ground subsidence on the surface. To ensure safety throughout the life cycle of the mine, fully distributed, real-time, and continuous sensing and early warning is essential. However, due to mining being a dynamic process with time and space, the overburden movement and collapse induced by mining activities often have a time lag effect. Therefore, how to find a new way to resolve the issue of the existing discontinuous monitoring technology of overburden deformation, obtain the spatiotemporal continuous information of the overlying strata above the coal seam in real time and accurately, and clarify the whole process of deformation in the compression–tensile strain transition zone of overburden has become a key breakthrough in the investigation of overburden deformation mechanism and mining subsidence. On this basis, firstly, the advantages and disadvantages of in situ observation technology of mine rock–soil body were compared and analyzed from the five levels of survey, remote sensing, testing, exploration, and monitoring, and a deformation and failure perception technology based on spatiotemporal continuity was proposed. Secondly, the evolution characteristics and deformation failure mechanism of the compression–tensile strain transition zone of overburden were summarized from three aspects: the typical mode of deformation and collapse of overlying rock–soil body, the key controlling factors of deformation and failure in the overburden compression–tensile strain transition zone, and the stability evaluation of overburden based on reliability theory. Finally, the spatiotemporal continuous perception technology of overburden deformation based on DFOS is introduced in detail, and an integrated coal seam mining overburden safety guarantee system is proposed. The results of the research can provide an important evaluation basis for the design of mining intensity, emergency decisions, and disposal of risks, and they can also give important guidance for the assessment of ground geological and ecological restoration and management caused by underground coal mining.
Databáze: Directory of Open Access Journals