Autor: |
Christine Anna Dambietz, Andrea Doescher, Michael Heming, Anja Schirmacher, Bernhard Schlüter, Andrea Schulte-Mecklenbeck, Christian Thomas, Heinz Wiendl, Gerd Meyer zu Hörste, Sarah Wiethoff |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Genetics, Vol 15 (2024) |
Druh dokumentu: |
article |
ISSN: |
1664-8021 |
DOI: |
10.3389/fgene.2024.1421952 |
Popis: |
Introduction: Pathogenic variants in the XK gene are associated with dysfunction or loss of XK protein leading to McLeod syndrome (MLS), a rare X-linked neuroacanthocytosis syndrome with multisystemic manifestation. Here we present clinical, genetic and immunological data on a patient originally admitted to our clinic for presumed post-COVID-19 syndrome, where thorough clinical work-up revealed a novel frameshift deletion in XK causal for the underlying phenotype. We additionally review the clinicogenetic spectrum of reported McLeod cases in the literature.Methods: We performed in-depth clinical characterization and flow cytometry of cerebrospinal fluid (CSF) in a patient where multi-gene panel sequencing identified a novel hemizygous frameshift deletion in XK. Additionally, Kell (K) and Cellano (k) antigen expression was analysed by Fluorescence-activated Cell Sorting (FACS). KEL gene expression was examined by RNA sequencing.Results: A novel hemizygous frameshift deletion in the XK gene resulting in premature termination of the amino acid chain was identified in a 46-year old male presenting with decrease in physical performance and persisting fatigue after COVID-19 infection. Examinations showed raised creatine kinase (CK) levels, neuropathy and clinical features of myopathy. FACS revealed the K-k+ blood type and reduced Cellano density. CSF flow cytometry showed elevation of activated T Cells.Conclusion: In-depth clinical, genetic, immunological and ribonucleic acid (RNA) expression data revealed axonal neuropathy, myopathy and raised levels of activated CSF-T-lymphocytes in a patient with a previously unpublished frameshift deletion in the XK gene. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|