Improved Penalty Strategies in Linear Regression Models

Autor: Bahadır Yüzbaşı, S. Ejaz Ahmed, Mehmet Güngör
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Revstat Statistical Journal, Vol 15, Iss 2 (2017)
Druh dokumentu: article
ISSN: 1645-6726
2183-0371
DOI: 10.57805/revstat.v15i2.212
Popis: We suggest pretest and shrinkage ridge estimation strategies for linear regression models. We investigate the asymptotic properties of suggested estimators. Further, a Monte Carlo simulation study is conducted to assess the relative performance of the listed estimators. Also, we numerically compare their performance with Lasso, adaptive Lasso and SCAD strategies. Finally, a real data example is presented to illustrate the usefulness of the suggested methods.
Databáze: Directory of Open Access Journals