Improved Penalty Strategies in Linear Regression Models
Autor: | Bahadır Yüzbaşı, S. Ejaz Ahmed, Mehmet Güngör |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Revstat Statistical Journal, Vol 15, Iss 2 (2017) |
Druh dokumentu: | article |
ISSN: | 1645-6726 2183-0371 |
DOI: | 10.57805/revstat.v15i2.212 |
Popis: | We suggest pretest and shrinkage ridge estimation strategies for linear regression models. We investigate the asymptotic properties of suggested estimators. Further, a Monte Carlo simulation study is conducted to assess the relative performance of the listed estimators. Also, we numerically compare their performance with Lasso, adaptive Lasso and SCAD strategies. Finally, a real data example is presented to illustrate the usefulness of the suggested methods. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |