Unique water H-bonding types on metal surfaces: from the bonding nature to cooperativity rules

Autor: Jibiao Li, Chang Qing Sun
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Materials Today Advances, Vol 12, Iss , Pp 100172- (2021)
Druh dokumentu: article
ISSN: 2590-0498
78064384
DOI: 10.1016/j.mtadv.2021.100172
Popis: Understanding the nature of H-bonding interactions is essential to modern sciences, such as biology, chemistry, and physics. Using density functional theory calculations, herein, we have identified two unique H-bonding types existing in a single sheet of a mixed water–hydroxyl phase on close-packed metal surfaces, in sharp contrast to conventional H-bonds in liquid water and water ices. Interestingly, the shallow H-bonds show reduced electrostatic and Pauli repulsion interactions, with an electrostatic polar character resulted from complete σ resonances, whereas the deep H-bonds exhibit enhanced electrostatic and Pauli repulsion interactions, with an electrostatic dipolar feature originated from hybrid orbital interactions. A trade-off-like cooperativity law of the two types of H-bonds was discovered, that is, strengthening in the internal bonds (dO–H) leads to weakening in the external bonds (dO:H) or vice versa. However, the shallow H-bonds exhibit a non-linear cooperativity, whereas the deep H-bonds show a linear cooperativity. We also identified an oxygen backbone cooperativity rule that strengthening the adsorbate–metal interactions has a net effect in analogy to reducing the O–O repulsion within the adlayer. Furthermore, we have discovered several universality classes in geometrical, vibrational, and electronic spaces for the two H-bonding types. Although shared by electronic universality classes, the two contrasting H-bonding types are featured by divergent trends with significant overlapping, where competitive variations in the electrostatic and Pauli repulsion strengths are basic rules for the cooperative H-bonding types. The knowledge of the unconventional H-bonding types expands our current understanding of H-bonding interactions in liquid water and water ices and points to the importance of H-bonding manipulation at electronic levels. These findings not only shed new light on probing the fundamental nature of H-bonds in general but also have insightful implications for resolving the cooperative H-bonding nature of interfacial water, liquid water, water ices, and aqueous solutions.
Databáze: Directory of Open Access Journals